Preconditioners for the conjugate gradient algorithm using Gram-Schmidt and least squares methods
نویسنده
چکیده
This paper is devoted to the study of some preconditioners for the conjugate gradient algorithm used to solve large sparse linear and symmetric positive definite systems. The construction of a preconditioner based on the Gram–Schmidt orthogonalization process and the least squares method is presented. Some results on the condition number of the preconditioned system are provided. Finally, numerical comparisons are given for different preconditioners.
منابع مشابه
On the Properties of Preconditioners for Robust Linear Regression
In this paper, we consider solving the robust linear regression problem, y = Ax+ ε by Newton’s method and iteratively reweighted least squares method. We show that each of these methods can be combined with preconditioned conjugate gradient least squares algorithm to solve large, sparse, rectangular systems of linear, algebraic equations efficiently. We consider the constant preconditioner A A ...
متن کاملProperties of Preconditioners for Robust Linear Regression
In this paper, we consider solving the robust linear regression problem by an inexact Newton method and an iteratively reweighted least squares method. We show that each of these methods can be combined with the preconditioned conjugate gradient least square algorithm to solve large, sparse systems of linear equations efficiently. We consider the constant preconditioner and preconditioners base...
متن کاملPreconditioners for Least Squares Problems by Lu Factorization
Iterative methods are often suitable for solving least-squares problems minkAx bk2 , where A 2 R n is large and sparse. The use of the conjugate gradient method with a nonsingular square submatrix A1 2 R n of A as preconditioner was first suggested by Läuchli in 1961. This conjugate gradient method has recently been extended by Yuan to generalized least-squares problems. In this paper we consid...
متن کاملA Total Least Squares Methodfor Toeplitz
A Newton method to solve total least squares problems for Toeplitz systems of equations is considered. When coupled with a bisection scheme, which is based on an eecient algorithm for factoring Toeplitz matrices, global convergence can be guaranteed. Circulant and approximate factorization preconditioners are proposed to speed convergence when a conjugate gradient method is used to solve linear...
متن کاملConjugate-gradient preconditioning methods for shift-variant PET image reconstruction
Gradient-based iterative methods often converge slowly for tomographic image reconstruction and image restoration problems, but can be accelerated by suitable preconditioners. Diagonal preconditioners offer some improvement in convergence rate, but do not incorporate the structure of the Hessian matrices in imaging problems. Circulant preconditioners can provide remarkable acceleration for inve...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Parallel Computing
دوره 34 شماره
صفحات -
تاریخ انتشار 2007